Retromer Is Essential for Autophagy-Dependent Plant Infection by the Rice Blast Fungus.
نویسندگان
چکیده
The retromer mediates protein trafficking through recycling cargo from endosomes to the trans-Golgi network in eukaryotes. However, the role of such trafficking events during pathogen-host interaction remains unclear. Here, we report that the cargo-recognition complex (MoVps35, MoVps26 and MoVps29) of the retromer is essential for appressorium-mediated host penetration by Magnaporthe oryzae, the causal pathogen of the blast disease in rice. Loss of retromer function blocked glycogen distribution and turnover of lipid bodies, delayed nuclear degeneration and reduced turgor during appressorial development. Cytological observation revealed dynamic MoVps35-GFP foci co-localized with autophagy-related protein RFP-MoAtg8 at the periphery of autolysosomes. Furthermore, RFP-MoAtg8 interacted with MoVps35-GFP in vivo, RFP-MoAtg8 was mislocalized to the vacuole and failed to recycle from the autolysosome in the absence of the retromer function, leading to impaired biogenesis of autophagosomes. We therefore conclude that retromer is essential for autophagy-dependent plant infection by the rice blast fungus.
منابع مشابه
Infection-Associated Nuclear Degeneration in the Rice Blast Fungus Magnaporthe oryzae Requires Non-Selective Macro-Autophagy
BACKGROUND The rice blast fungus Magnaporthe oryzae elaborates a specialized infection structure called an appressorium to breach the rice leaf surface and gain access to plant tissue. Appressorium development is controlled by cell cycle progression, and a single round of nuclear division occurs prior to appressorium formation. Mitosis is always followed by programmed cell death of the spore fr...
متن کاملAutophagic fungal cell death is necessary for infection by the rice blast fungus.
Rice blast is caused by the fungus Magnaporthe grisea, which elaborates specialized infection cells called appressoria to penetrate the tough outer cuticle of the rice plant Oryza sativa. We found that the formation of an appressorium required, sequentially, the completion of mitosis, nuclear migration, and death of the conidium (fungal spore) from which the infection originated. Genetic interv...
متن کاملGenome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease.
To cause rice blast disease, the fungus Magnaporthe oryzae elaborates specialized infection structures called appressoria, which use enormous turgor to rupture the tough outer cuticle of a rice leaf. Here, we report the generation of a set of 22 isogenic M. oryzae mutants each differing by a single component of the predicted autophagic machinery of the fungus. Analysis of this set of targeted d...
متن کاملGenome-wide Transcriptional Profiling of Appressorium Development by the Rice Blast Fungus Magnaporthe oryzae
The rice blast fungus Magnaporthe oryzae is one of the most significant pathogens affecting global food security. To cause rice blast disease the fungus elaborates a specialised infection structure called an appressorium. Here, we report genome wide transcriptional profile analysis of appressorium development using next generation sequencing (NGS). We performed both RNA-Seq and High-Throughput ...
متن کاملانتقال ژنهای مقاوم به بلاست Pi-1 و Pi-2به برنج رقم طارم دیلمانی
Rice cultivar Tarom Dilamani becauded a fragrance, flavor, cooking and marketing is a qualitative rice in Iran. This cultivar have high susceptibility against blast disease (Magnaporthe grisea). One of the important trouble producers of the Dilamani's rice cultivar is chemical control against blast disease and cause poisonous pollution of natural environment. The best manner in order to control...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS genetics
دوره 11 12 شماره
صفحات -
تاریخ انتشار 2015